Regularization of autoconvolution and other ill-posed quadratic equations by decomposition
نویسنده
چکیده
Standard methods for regularizing ill-posed nonlinear equations rely on derivatives of the nonlinear forward mapping. Thereby stronger structural properties of the concrete problem are neglected and the derived algorithms only show mediocre efficiency. We concentrate on nonlinear mappings with quadratic structure and develop a derivative-free regularization method that allows us to apply classical techniques known from linear inverse problems to quadratic equations. In fact, regularization of a quadratic problem can be reduced to regularization of one linear problem and a downstream inversion of a well-posed quadratic mapping. The motivation for considering problems with quadratic structure in more detail comes from applications in laser optics where kernelbased autoconvolution-type equations have to be solved.
منابع مشابه
روشهای تجزیه مقادیر منفرد منقطع و تیخونوف تعمیمیافته در پایدارسازی مسئله انتقال به سمت پائین
The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملThe Regularized Total Least Squares Problem: Theoretical Properties and Three Globally Convergent Algorithms
Total Least Squares (TLS) is a method for treating an overdetermined system of linear equations Ax ≈ b, where both the matrix A and the vector b are contaminated by noise. In practical situations, the linear system is often ill-conditioned. For example, this happens when the system is obtained via discretization of ill-posed problems such as integral equations of the first kind (see e.g., [7] a...
متن کاملSolving a nonlinear inverse system of Burgers equations
By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013